화학공학소재연구정보센터
Journal of Materials Science, Vol.42, No.8, 2796-2801, 2007
Influence of coating on short steel fiber reinforcements on corrosion behavior of aluminium base short steel fiber reinforced composites
Steel fiber reinforced aluminium composites are attractive materials of high specific strength but exhibit poor resistance against electrochemical corrosion. The study discusses the electrochemical corrosion behavior of uncoated, copper and nickel coated short steel fiber reinforced aluminium and Al-2Mg matrix composites in 1 (N) NaCl solution. Galvanic corrosion between the steel fiber and aluminium governs the corrosion behavior of these composites. It has been observed that open circuit potential (OCP) is shifted to more negative side with copper coating on the fibers and to the more positive side on coating the fibers with nickel. Compared to the uncoated fiber higher corrosion current density indicates corrosion rate was observed for the copper coated fiber reinforced composites where as a lower current density was noted for the nickel coated fiber reinforced composites was observed. Addition of 2 wt% magnesium to aluminium alloy matrix increased the corrosion current density. The corrosion mechanism in these composites is dominated by galvanic cell formation that is evident from the dissolution of Al matrix near the peripheral region of steel fibers.