화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.14, 3813-3821, 2007
Interaction of the antimicrobial peptide dicynthaurin with membrane phospholipids at the air-liquid interface
This paper reports the first study on the interaction of the antimicrobial peptide dicynthaurin with 1,2-dipalmitoyl-glycerophosphatidyl-glycerol investigated in monolayers at the air-liquid interface. The influence of the peptide on the two-dimensional phase behavior of the negatively charged lipid was elucidated by means of pressure-area isotherm measurements, fluorescence microscopy, and grazing incidence X-ray diffraction measurements. The pure peptide forms a stable monolayer at the air-liquid interface up to 30 mN/m as shown for both the monomeric and the dimeric cynthaurins. The peptide lipid interaction was monitored in isotherm measurements showing a strong adsorption of the peptide and stabilization at the interface promoted by the lipid monolayer. The X-ray diffraction measurements in agreement with fluorescence microscopy studies showed that the peptide destabilizes the condensed chain lattice, leading to a complete fluidization of the condensed lipid phase on physiological buffer. The adsorption of the peptide to the negatively charged lipid monolayer and the fluidization of the condensed chain lattice suggest a direct link to the peptides' ability to expand the bacterial membrane that would be relevant for the in vivo mode of action.