Journal of the American Chemical Society, Vol.129, No.14, 4463-4469, 2007
Pd(OAc)(2)/P((C6H11)-C-c)(3)-Catalyzed allylation of aryl halides with homoallyl alcohols via retro-allylation
Allylations of aryl halides take place upon treatment of tertiary homoallyl alcohols with aryl halides in the presence of cesium carbonate and a palladium catalyst. The allylation reaction would consist of the following steps: (1) oxidative addition of aryl halide to palladium, (2) ligand exchange between the halide and the homoallyl alcohol affording aryl(homoallyloxy)palladium, (3) retro-allylation of the palladium alkoxide to generate sigma-allyl(aryl)palladium with concomitant liberation of the relevant ketone, and (4) productive reductive elimination. Since the retro-allylation step proceeds in a concerted fashion via a conformationally regulated six-membered cyclic transition state, the allylation reactions are highly regio- and stereospecific when homoallyl alcohols having a substituted allyl group are used. Whereas triarylphosphine is known to serve as a ligand for the palladium-catalyzed allyl transfer reactions, tricyclohexylphosphine proves to significantly expand the scopes of aryl halides to electron-rich aryl chlorides and of homoallyl alcohols to cyclic homoallyl alcohols. The new arylative ring-opening reactions of cyclic homoallyl alcohols allow for the synthesis of ketones having a branched or linear allylarene moiety at the remote terminus in regio-and stereospecific manners.