화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.22, 6156-6160, 2007
On the performance of DFT and interatomic potentials in predicting the energetics of (three-membered ring-containing) siliceous materials
We compare the enthalpies of transition for a range of SiO2 phases, including siliceous zeolites and dense polymorphs, calculated using three different interatomic potentials (Sanders-Leslie-Catlow (SLC), Sastre-Gale (SG), van Beest-Kramers-van Santen (BKS)), and from B3LYP periodic DFT calculations, with the experimentally measured values. It is found that the calculated results show a linear correlation with the measured values but that they often either considerably underestimate or overestimate enthalpy differences compared to experiment. Care should thus be taken when comparing experimental and calculated results. A linear rescaling of the calculated enthalpies to put the data on the same energy scale is proposed. Furthermore, it is found that when comparing enthalpies of transitions for materials containing three-membered rings, for which there is no experimental data available, the values, rescaled to the experimental energy scale, are very similar for both DFT and interatomic potentials (except for the BKS potential). The latter result suggests that the energetics of three-membered ring containing materials is well described using both approaches. Finally, we discuss the transition enthalpies of four three-membered ring containing siliceous materials and demonstrate that three-membered ring containing materials are not necessarily energetically disadvantageous but do become so progressively with increasing number of three-membered rings.