Langmuir, Vol.23, No.10, 5279-5282, 2007
Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction
A study of the synergistic tuning of nitrogen-doped carbon nanotubes (NCNTs) as support- and size-monodisperse platinum nanoparticles templated from G4-NH2 dendrimers (Pt-DEN's) as catalysts targeted toward oxygen reduction is reported. UV-vis spectroscopy, adsorption isotherms, TGA, TEM, and voltammetry were used to characterize the loading and activity of Pt-DENs immobilized on CNT and NCNT supports. The facile uptake of Pt-DENs was found to be influenced by the number of edge plane sites on the NCNT support with higher adsorption rates observed for NCNTs with increased nitrogen content. Pt-DEN/NCNT composites exhibit high activity with a mass-transport-limited current density and mass activity of 2.3 mA cm(-2) and 0.05 mA g(-1), respectively, for the oxygen reduction reaction (ORR).