Polymer, Vol.48, No.10, 2818-2826, 2007
Surface segregation of branched polyethyleneimines in a thermoplastic polyurethane
Hyperbranched polyethyleneimines were modified with methacrylated fluorosurfactants and aliphatic epoxides to provide a library of macromolecules with controlled chain ends and residual amine functionality. These materials were co-dissolved with a thermoplastic polyurethane-ether and the blends were subsequently deposited as films cast from solution. The surface chemistry of the cast films was determined using angle resolved X-ray photoelectron spectroscopy (AR-XPS) and Rutherford backscattering spectroscopy (RBS). Experimental results indicate that the modified hyperbranched polymers (HBPs) concentrate at the air-polymer interface. Furthermore, HBPs that were complexed to polyoxometalates (POMs) using electrostatic interactions also exhibited surface segregation in cast polymer films, resulting in ca. 10-fold increase of metal at the film surface relative to the known bulk concentration. Results from XPS and RBS examination of the films are consistent with surface segregation of the HBP-POM hybrids, exhibiting increased metal, fluorine, and nitrogen content near the surface of the film, as well as significant changes in wetting behavior. This study indicates that modified HBPs may be used to selectively transport inorganic species such as polyoxometalates to polymer film surfaces. (c) 2007 Published by Elsevier Ltd.