화학공학소재연구정보센터
Polymer, Vol.48, No.10, 2860-2865, 2007
Cyclic acetal as coinitiator for bimolecular photoinitiating systems
Cyclic acetals were used to replace the conventional amines in bimolecular photoinitiating systems. The mixtures of benzophenone derivatives and cyclic acetals were used to initiate the UV photopolymerization of 1,6-hexanedioldiacrylate (HDDA). Camphorquinone (CQ)/1,3-benzodioxole (BDO) combinations were used to initiate the visible light photopolymerization of 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl] propane (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) (70/30 wt%) for dental application. The kinetics was recorded by real-time infrared spectroscopy (RTIR). Ethyl 4-N,N-dimethylaminobenzoate (EDMAB) was used as control in the same photocuring condition. The results showed that the addition of cyclic acetals greatly increased the rate of polymerization (Rp) and final double bond (DC) of HDDA. Combination of p-chlorobenzophenone (CBP)/BDO had the highest initiating reactivity. BDO also showed an effective coinitiator for camphorquinone-based initiator system. Comparing with EDMAB, CBP/BDO and CQ/BDO indicated comparable initiating reactivity. Moreover, the natural component characteristics of BDO made it a promising alternative to commercial amine in biomolecular photoinitiating system. (C) 2007 Elsevier Ltd. All fights reserved.