화학공학소재연구정보센터
Polymer, Vol.48, No.10, 2958-2968, 2007
Effect of temperature and strain rate on the tensile deformation of polyamide 6
The effects of the draw temperature and the strain rate on the tensile deformation of polyamide 6 (PA6) were investigated using three PA6 samples with different initial shapes and physical dimensions. It is observed that the special double yielding phenomenon is indeed present in PA6, provided that certain temperature and strain rate are given, as well as the appropriate initial structure. The results also show that the dependence of the first yield stress on temperature is nearly linear while on strain-rate is logarithmic. The temperature and strain-rate sensitivity change at the draw temperature in the vicinity of the glass transition temperature of PA6. The double yielding of PA6 is not only the combination of two thermally activated rate processes depending on temperature and strain rate, but also associated with the initial structure of samples. The yielding manner for PA6 seems to be determined by the synergetic effect of both the deformation of amorphous and crystalline phases. Thus some special structure involving the crystalline and amorphous phases should come into being in PA6 exhibiting double yielding. Especially the important role of inter- and intra-link should be taken into account. The theory of partial melting-recrystallization cannot account fully for the double yielding of PA6. (C) 2007 Elsevier Ltd. All rights reserved.