Thin Solid Films, Vol.515, No.14, 5536-5540, 2007
Hydrodynamic surface fluctuations of polymer films by coherent X-ray scattering
We have applied X-ray photon correlation spectroscopy (XPCS) to measure the surface dynamics of polymer films of thicknesses down to a few times of the polymer radius of gyration. XPCS is currently the only technique to measure selectively dynamics of surface and/or interfacial fluctuations of the films thanks to high brilliance and coherence of the third generation synchrotron source. The results show the behavior of the capillary waves expected in viscous liquid when the film thickness is thicker than four times of the radius of gyration. However, thinner films show a deviation indicating the need to account for viscoelasticity. We present also the theory for surface dynamics of the thermally excited fluctuations on homogenous single-layer film with arbitrary depth is generalized to describe surface and interfacial dynamics of polymeric liquid bilayer films in terms of susceptibilities, power spectra and characteristic relaxation time constants. The effects on surface dynamics originating from viscosity inhomogeneities close to surface region are investigated by the bilayer theory and compared with the surface dynamics from homogeneous single-layer films under non-slip and slip boundary conditions. (c) 2006 Elsevier B.V. All rights reserved.