Journal of Structural Biology, Vol.119, No.1, 59-71, 1997
The toxicity of the Alzheimer's beta-amyloid peptide correlates with a distinct fiber morphology
In an attempt to elucidate the relationship among aggregation properties, fiber morphology, and cellular toxicity several beta-amyloid peptides (A beta) were prepared according to a standardized procedure. Peptides either carried mutations inside the membrane anchor segment around amino acid position 35 or their carboxy terminus was shortened from 42 to 41, 40, or 39 amino acids. The time-dependent self-assembly of monomeric A beta into fibers was simultaneously monitored by electron microscopy, circular dichroism spectroscopy, analytical ultracentrifugation, and A beta-mediated cellular toxicity using the reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to measure cell viability, The transition of A beta monomers into fibers was analyzed by more than 600 electron micrographs. Distinct morphological changes from seed-like structures to immature and mature fibers were observed. Seeds were of spherical appearance, Immature fibers were typically elongated structures with a rough surface and with varying thickness depending on the A beta sequence. Mature fibers were characterized by a periodic variation of their thickness along the fiber axis. The proportion of these different structures and the total amount of aggregated A beta was amino acid sequence-dependent. Wild-type A beta(1-42) and its oxidized derivative carrying a methionine sulfoxide residue at position 35 showed the highest rate of fiber formation and exerted toxic activity in the MTT assay at very low nanomolar concentrations. The fibers formed by these two peptides were predominantly of the mature type. In contrast, carboxyl-terminus truncated peptides A beta(1-41), A beta(1-40), and A beta(1-39) or most A beta(1-42) derivatives mutated around amino acid position 35 showed a reduced aggregation rate, the immature fibers predominated, and the toxicity was orders of magnitude lower. Thus, a correlation can be drawn among the chemical structure, aggregation properties, fiber morphology; and cellular toxicity. (C) 1997 Academic Press.