Journal of Vacuum Science & Technology A, Vol.25, No.3, 480-484, 2007
Mass fractionation of carbon and hydrogen secondary ions upon Cs+ and O-2(+) bombardment of organic materials
A phenomenon known as mass fractionation has been probed in organic materials using secondary ion mass spectrometry (SIMS). Mass fractionation occurs because two isotopes of a particular species (i.e., identical number of protons, but different number of neutrons) do not have identical secondary ion yields in a constant chemical environment. Two primary ion probes, Cs+ and O-2(+), have 2 been utilized with detection of negative and positive secondary ions, respectively, using a magnetic sector mass spectrometer. These two analysis conditions have been found to yield considerably different mass fractionation effects as a result of different sputtering and ionization mechanisms. Also, as determined previously with SIMS analysis of inorganic materials, the lower molecular weight species carbon and hydrogen are particularly susceptible to mass fractionation effects. Because organic materials are primarily composed of carbon and hydrogen, and because isotopic labeling is often utilized to accurately analyze such materials, knowledge of these effects in organic materials is essential for quantitative SIMS analysis. (C) 2007 American Vacuum Society.