화학공학소재연구정보센터
Langmuir, Vol.23, No.13, 7314-7320, 2007
Silicone nanocapsules templated inside the membranes of catanionic vesicles
A simple and effective way to synthesize hollow silicone resin particles of controlled diameter is presented. The synthesis utilizes catanionic vesicles as templates for the polycondensation/polymerization processes of 1,3,5,7-tetramethylcyclotetrasiloxane (D-4(H)) within their membranes. Two different surfactant systems were used to form the vesicular templates: mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecylbenzenesulfonate (SDBS) in the cationic (the DTAB/SDBS system) or anionic (the SDBS/DTAB system) rich region of the phase diagram. The templates obtained from these surfactant mixtures form spontaneously unilamellar vesicles in aqueous solution. The vesicular templates swell upon addition of D-4(H), thus increasing their size. The silicone resin was obtained in acid- or base-catalyzed polycondensation and ring-opening polymerization processes of D-4(H). In the case of the DTAB/SDBS system the formation of a densely cross-linked silicone material with SiO3/2 units allowed the nanocapsules to retain the vesicular shape after removal of the template, whereas in the SDBS/DTAB system, the polymer produces capsules which are too smooth to support surfactant lysis. The morphology of the silicone nanocapsules was analyzed using transmission electron microscopy (TEM) and, in some cases, atomic force microscopy (AFM). TEM and AFM reveal discrete hollow particles with a small amount of linked or aggregated hollow silica shells.