Langmuir, Vol.23, No.13, 7392-7397, 2007
Frequency response of a quartz crystal microbalance loaded by liquid drops
The frequency response of a quartz crystal microbalance (QCM) in contact with a spreading liquid drop is studied in this paper. An improved model describing the frequency change of the QCM with the shape evolution of the liquid drop with time is proposed based on hydrodynamic analysis, which has not been reported in the literature. It is found that the drop spreading shape, including the base radius and height, has a significant influence on the frequency response of the QCM, resulting in an unexpected increase in the resonant frequency of the QCM. The model shows that the combination of the knowledge about the radial sensitivity of the QCM and the dynamic spreading of the liquid drop is potentially important to optimize the interpretation of the experimental results. The predicted results are verified with experimental results obtained with silicone oil.