Chemical Physics Letters, Vol.347, No.1-3, 247-254, 2001
Strange kinetics and complex energy landscapes in a lattice model of protein folding
Non-exponential relaxation in a simplified lattice model of folding is studied with Monte Carlo (MC) calculation. As folding proceeds, population of the native conformation approaches its equilibrium value with the stretched exponential form. As temperature increases, relaxation becomes less stretched, and for 2 sequences out of 5 tested ones, the relaxation becomes faster than exponential at high temperature. Energy landscape of the model is analyzed and flow of trajectories is followed to explain temperature dependence of kinetics. Measurement of stretched or shrunken kinetics of folding should help to understand nature of intermediates and ruggedness of the landscape.