Chemical Physics Letters, Vol.353, No.1-2, 154-162, 2002
On the evaluation of quasi-thermodynamic magnitudes from rate constant values. Influence of the variational and tunnelling contributions
Quasi-thermodynamic magnitudes obtained from three different analytical fits to the experimental rate constants of the CH4 + OH reaction are compared to the values obtained from theoretical rate constants calculated using canonical variational transition state theory plus multidimensional tunnelling contributions. A right decomposition of DeltaG(tot.0) into its enthalpic and entropic contributions is not experimentally feasible because it depends on the particular analytical expression used for the rate constants. Then. theoretical calculation of the rate constants at all the required temperatures becomes the only way to get reliable values of DeltaH(tot.0) (and E-a and DeltaS(tot.0). Our results show that both variational and tunnelling nonsubstantial contributions to the quasi-thermodynamic magnitudes are significant for the CH4 + OH reaction and, probably, for a wide range of gas-phase chemical reactions. (C) 2002 Elsevier Science B.V. All rights reserved.