Chemical Physics Letters, Vol.364, No.5-6, 556-561, 2002
Collective excitation dynamics and polaron formation in molecular aggregates
Real-space collective excitation dynamics in molecular aggregates is studied using a model where the electronic system is described via exciton theory with surface hopping. The nuclear dynamics are included using the Langevin equation where temperature and zero-point motions are entered via the fluctuation-dissipation theorem. Dynamic processes like exciton relaxation, localization, polaron formation and diffusion of self-trapped excitons, which commonly require different theories, are simultaneously described with our approach. Numerical simulations of small linear aggregates are performed. Contrary to the common view we show that exciton relaxation can temporarily increase exciton delocalization. The results are discussed based on the photosynthetic light-harvesting pigment-protein complexes. (C) 2002 Elsevier Science B.V. All rights reserved.