Journal of Molecular Catalysis A-Chemical, Vol.200, No.1-2, 81-94, 2003
Synthesis of new o-alkyl substituted arylalkylphosphanes: study of their molecular structure and influence on rhodium-catalyzed propene and 1-hexene hydroformylation
A set of new phosphane ligands designed to increase the branched-to-normal ratio of the hydroformylation reaction were prepared in the same way as the previously reported ortho-alkyl substituted arylphosphanes, which have shown increased i/n ratios in the hydroformylation of propene and 1-hexene. In order to determine the relationship between the catalytic behavior and stereoelectronic properties of the ligands, various functional alkyl groups (methyl, isopropyl, cyclohexyl) were placed on the phosphorus atom directly and in the ortho position of the phenyl ring connected to phosphorus. In the hydroformylation reaction of propene and 1-hexene a higher i/n ratio resulted with nearly all the ligands compared with that of triphenylphosphane. Additionally as the ortho-alkyl-substituent became larger, it had a favorable effect on the i-selectivity. Characterization of the ligands was carried out by NMR spectroscopy (mainly H-1, P-31{H-1}, C-13{H-1}, HSQC/HETCOR and COSY-90). Properties of the ligands were also studied by quantum mechanical calculations and by synthesizing three Rh(acac)(CO)(PR3) derivatives. The o-alkyl-substituent was orientated outside the ligands' cone angle in the X-ray crystal structures of (2-cyclohexylphenyl)dicyclohexylphosphane and (2,5-dimethylphenyl)bis(4-pyridyl)phosphane, and Rh(acac)(CO)(PR3) complex of (2-methylphenyl)dicyclohexylphosphane. (C) 2003 Elsevier Science B.V. All rights reserved.