화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.119, No.1-3, 167-174, 2005
Assessing effect of electrode configuration on the efficiency of electrokinetic rernediation by sequential extraction analysis
The electroremediation experiments were conducted on artificially polluted soils by introducing a single metallic contaminant (Pb, Zn and Cu) and multiple metallic contaminants (Pb + Zn + Cu). Based on sequential extraction results, it was observed that the removal efficiencies of lead, zinc and copper vary depending on types of contamination. When the soil was contaminated only by lead, the removal efficiency was found to be 48%. However, the removal efficiency of lead decreased to 32% when the soil was contaminated by the combination of lead, zinc and copper. Similar results were observed for zinc and copper. The corresponding removal efficiency values for zinc and copper were 92% and 37%, and 34% and 31%, respectively. Effects of electrode geometry on the removal efficiency of metals were investigated by constructing a multiple anode arrangement. In this arrangement, the electrokinetic unit consists of three cylinders, which lie one inside the other, and the soil was placed in the middle cylinder. The central cylinder was the cathode well and the outer cylinder was the anode well, where eight identical anode electrodes were placed in octagonal with respect to the cathode electrode. By using this electrode arrangement in removal of metals from the soil contaminated with the combination of three metals (Pb + Zn + Cu), the removal efficiencies of lead, zinc and copper were found to be 29%, 18% and 18%, respectively. As it can be seen, these numerical values are much lower than the values that were obtained when the traditional two-plate electrode arrangement used in the electroremediation experiments (32%, 37% and 31%). (c) 2004 Elsevier B.V. All rights reserved.