Journal of Hazardous Materials, Vol.125, No.1-3, 221-230, 2005
Optimization of the aerobic biological treatment of thermophilically treated refractory wastewater
A pilot scale conventional activated sludge was operated for over 600 days to study its effectiveness at further remediating the effluent of an existing industrial site's thermophilic biological treatment stage. During the course of the study, the activated sludge was able to further biodegrade the contaminants in the incoming industrial wastewater in terms of both BOD and nitrogen reductions at varying hydraulic and solids retention times, despite elevated concentrations of soluble copper being present. A limiting hydraulic retention time (HRT) for BOD removal of 1.5 days was observed as well as the loss of nitrification occurred at a solids retention time (SRT) of approximately 6 days. Biokinetic coefficients were determined with the maximum rate of substrate utilization per unit mass of microorganisms, k, of 0.14 mg VSS/(mg sBOD-d) and the Monod half velocity constant, K-s, of 9.4 mg sBOD/L. Simultaneous nitrification and denitrification (SND) of the nitrogenous compounds found in this wastewater was observed throughout the majority of the experimentation while the bulk DO in the system was greater than 1 mg/L. The activated sludge was estimated to contain soluble copper on the order of I mg/L throughout the course of operation with no apparent detriment to nitrification. Additionally, the activated sludge was able to biologically remove the main solvents found in the influent wastewater. The removals of trace levels of N-nitrosodimethylamine (NDMA) were also observed. (c) 2005 Published by Elsevier B.V.
Keywords:activated sludge;industrial wastewater;thermophilic;simultaneous nitrification and denitrification (SND);volatile organic compounds;NDMA