Journal of the American Ceramic Society, Vol.85, No.6, 1529-1536, 2002
Chemical durability of silicon oxycarbide glasses
Silicon oxycarbide (SiOC) glasses with controlled amounts of Si-C bonds and free carbon have been produced via the pyrolysis of suitable preceramic networks. Their chemical durability in alkaline and hydrofluoric solutions has been studied and related to the network structure and microstructure of the glasses. SiOC glasses, because of the character of the Si-C bonds, exhibit greater chemical durability in both environments, compared with silica glass. Microphase separation into silicon carbide (SiC), silica (SiO2), and carbon, which usually occurs in this system at pyrolysis temperatures of >1000degrees-1200degreesC, exerts great influence on the durability of these glasses. The chemical durability decreases as the amount of phase separation increases, because the silica/silicate species (without any carbon substituents) are interconnected and can be easily leached out, in comparison with the SiOC phase, which is resistant to attack by OH-or F- ions.