화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.86, No.9, 1616-1618, 2003
Current-voltage characteristics of cobalt-doped inversion boundaries in zinc oxide bicrystals
Undoped and cobalt-doped basal inversion boundaries were fabricated in ZnO bicrystals to investigate their current-voltage characteristics. High-resolution transmission electron microscopy observations and energy-dispersive X-ray spectroscopy analyses for a cobalt-doped bicrystal revealed that the boundary was highly coherent and free from intergranular phases and precipitates, but a certain amount of cobalt was present near the boundary. The cobalt-doped bicrystals exhibited nonlinear characteristics that depended on cooling rates from annealing temperature, in contrast to linear characteristics of the undoped bicrystals. It is suggested that the presence of cobalt impurities enhances the formation of acceptor-like native defects near the boundaries to generate electrostatic potential barriers.