화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.89, No.8, 2369-2380, 2006
Effect of interface structure on the microstructural evolution of ceramics
The interface atomic structure was proposed to have a critical effect on microstructure evolution during sintering of ceramic materials. In liquid-phase sintering, spherical grains show normal grain growth behavior without exception, while angular grains often grow abnormally. The coarsening process of spherical grains with a disordered or rough interface atomic structure is diffusion-controlled, because there is little energy barrier for atomic attachments. On the other hand, kink-generating sources such as screw dislocations or two-dimensional (2-D) nuclei are required for angular grains having an ordered or singular interface structure. Coarsening of angular grains based on a 2-D nucleation mechanism could explain the abnormal grain growth behavior. It was also proposed that a densification process is closely related to the interface atomic structure. Enhanced densification by carefully chosen additives during solid state sintering was explained in terms of the grain-boundary structural transition from an ordered to a disordered open structure.