화학공학소재연구정보센터
Applied Surface Science, Vol.184, No.1-4, 199-203, 2001
Numerical study of Bloch electron dynamics in wide band-gap semiconductors
In this paper, we are using numerical calculations to demonstrate the importance of band to band tunneling in wide bandgap semiconductors. We have considered 4H-SiC, 3C-SiC and wurtzite GaN as prototype semiconductors in the demonstration. Wide band-gap semiconductors allow device operation under very high-applied electric fields, where significant band to band tunneling is expected to occur. Hexagonal wide band-gap semiconductors have a valence band structure with a large number of bands separated by rather small energies. Our calculation shows that this leads to a very significant band to band tunneling even at relatively low electric fields. In cubic wide band-gap semiconductors the tunneling is much less pronounced. However, at the valence band maximum the band separations are small enough to allow significant band to band tunneling. The spin-orbit interaction tends to bend the band near the maximum creating degradation from a parabolic curvature. This bending is found to significantly influence the band to band tunneling process.