화학공학소재연구정보센터
Applied Surface Science, Vol.203, 620-624, 2003
Insights into ToF-SIMS analysis of dendritic macromolecules: cationization and PCA to probe their molecular weight on surfaces
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is utilized to study dendrons, dendrimers and hyperbranched derivatives prepared from the 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) or the 3-ethyl-3-(hydroxymethyl)oxetane (TMPO). We show that the cationization experiments of the intact molecules with alkali or metal ions such as Na+, Cu+ or Ag+ allow to detect whole molecular species up to 3000 Da (low generation). It allows to probe directly their molecular TM weight and end-functionality. However, when the molecule lift-off fails for series of hyperbranched polyesters Boltorn(TM), the fingerprint part of the SIMS spectra (m/z < 300 Da) is instead used. The low-mass fragments are mainly assigned to the bis-MP repeating unit. Ions due to the core molecule are also distinguished. Data treatment is combined with the principal component analysis (PCA) multivariate statistical method to highlight the main differences between the spectra. Only one principal component (PC1) is needed to describe most of the variance between the samples taking into account the generation effect. PC1 plotted as a function of the molecular weight gives a calibration curve. Normalization of the data set by ion intensities from the core molecule allows the linearization of the SIMS intensities vs. the molecular weight. (C) 2002 Elsevier Science B.V. All rights reserved.