화학공학소재연구정보센터
Applied Surface Science, Vol.252, No.1, 245-251, 2005
Shells on nanowires detected by analytical TEM
Nanostructures in the form of nanowires or filled nanotubes and nanoparticles covered by shells are of great interest in materials science. They allow the creation of new materials with tailored new properties. For the characterisation of these structures and their shells by means of analytical transmission electron microscopy (TEM), especially by energy dispersive X-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS), the accurate analysis of linescan intensity profiles is necessary. A mathematical model is described, which is suitable for this analysis. It considers the finite electron beam size, the beam convergence, and the beam broadening within the specimen. It is shown that the beam size influences the measured result of core radius and shell thickness. On the other hand, the influence of the beam broadening within the specimen is negligible. At EELS, the specimen thickness must be smaller than the mean free path for inelastic scattering. Otherwise, artifacts of the signal profile of a nanowire can pretend a nanotube. (c) 2005 Elsevier B.V. All rights reserved.