Applied Surface Science, Vol.252, No.4, 893-904, 2005
High resolution quantitative SIMS analysis of shallow boron implants in silicon using a bevel and image approach
Secondary ion mass spectrometry (SIMS) is frequently used as the preferred tool for dopant profiling due to its sensitivity and depth resolution. However, as dopant profiles become shallower most, if not all of the implant profile lies in the pre-equilibrium or transient region of an SIMS depth profile. In this region sputter yield and ionisation rate vary making accurate quantification of the implant profile very difficult. These problems can be reduced through the use of much lower beam energies or oxygen flooding of the sample. However, most SIMS instruments do not have these capabilities. In this paper an alternative technique for producing an accurate depth profile of a shallow implant, using existing SIMS technology is presented. Through the fabrication of bevels with very small slope angles on a shallow boron implanted silicon via a chemical etch, SIMS ion imaging is performed on the exposed surface. Ion image data is then summed, and in conjunction with accurate measurement of the bevel morphology, a shallow boron implant profile produced. The 'bevel-image' profile compares very well with a profile obtained using a 1 keV oxygen beam. To ensure a good dynamic range on the 'bevel-image' profile it is important to clean the bevel with a HF etch, prior to imaging. (c) 2005 Elsevier B.V. All rights reserved.