Applied Surface Science, Vol.253, No.12, 5393-5399, 2007
Investigation of monolayer dispersion of benzoic acid supported on the surface of H-titanate nanotubes
Benzoic acid (BA) can disperse spontaneously onto the surface of H-titanate nanotubes (HTNTs) in a sub-monolayer state by heating mechanical mixtures method. The structure of BA-HTNTs system has been characterized by X-ray diffraction (XRD), thermogravimetric (TG), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) in detail. The results show that the H-bond association structure among BA molecules collapses and the carboxyl groups react with the surface hydroxyl group of HTNTs to form a salt-like structure on the surface after dispersion. The monolayer dispersion capacity determined by XRD is ca. 0.305 g BA g(-1) HTNTs, which is lower than the utmost monolayer dispersion capacity 0.550 g BA g(-1) HTNTs calculated according to a model that the benzene ring in BA molecules is perpendicular to the surface of HTNTs. At the same time, the dispersion capacity is also measurement by the fit of C 1s XPS peak at various BA loadings at first time. (C) 2006 Elsevier B.V. All rights reserved.