Composite Interfaces, Vol.11, No.3, 263-269, 2004
Interfacial reinforcement in composites with PPT aramid fiber modified by network-intercalation method
A novel surface treatment for poly(p-phenylene telephthalamide) (PPTA) fiber is performed with silanes and urethane binder that are usually used as sizes for glass fiber treatment. The PPTA used for the surface treatment is modified by a spinning process to make the gaps between PPTA crystallites open. In this treatment, supercritical carbon dioxide fluid method is used to impregnate the sizing molecules into open gaps in PPTA fiber. After the impregnation, the fiber is heated at 100-170degreesC to make the gaps close and turn open-gapped fiber to the normal type of PPTA modified with sizes. The interfacial shear strength of fiber to epoxy resin is measured by microdroplet method. The modified PPTA improves the interfacial shear strength by ca. 67% to the interfacial shear strength given by normal PPTA without treatment. Those improvements are 33% without heating, 18% with only silanes, and 12% with only urethane instead of the mixture of silane and urethane. In addition, the fiber strength shows no remarkable decrease after the treatment.