Experimental Heat Transfer, Vol.16, No.2, 97-109, 2003
Experimental investigation of the performance of a single proton exchange membrane fuel cell using dry fuel
Recently, the requirements for cellular phones, portable computers, and digital cameras have increased dramatically. A portable electric power supply with long duration and high performance is needed for these products. A proton exchange membrane fuel cell (PEMFC) can meet these requirements and becomes one of the best candidates for a portable power source. It is impossible to install an extra humidifier into small-scale portable electric products for PEMFC water management. This article presents a series of experiments to investigate the performance of a single PEMFC. The effects of different operating conditions on cell performance, including the temperature, pressure, and inlet fuel/oxidant flow rate, are discussed. The test results confirm the positive effect of these parameters on cell performance and power output. The interaction effect of temperature flow rate is related to the cell humidity, and is important for cell performance. The dry-out problem for a PEMFC is also significantly revealed in the experiments for higher cell temperature and flow rate. Current experimental results can provide useful information for investigating the cell performance and its operating effects under dry fuel/oxidant flow conditions and as a benchmark for simulation work in future studies.