Experimental Heat Transfer, Vol.19, No.3, 181-191, 2006
Estimation of thermal conductivity of nanofluid using experimental effective particle volume
The thermal conductivities of nanofluid containing a small amount of ultra-dispersed diamond (UDD), silver, and silica nanoparticles were measured using a transient hot-wire method. To explain the enhancement of thermal conductivity of nanofluid, the effective volume of nanoparticles was used instead of the real volume to predict the thermal conductivity of nanofluid. The liquid layering on the surface of nanoparticles may be described as the effective volume of nanoparticles. This liquid layering is one important mechanism of the heat transfer in nanofluids. The effective volume of nanoparticles was estimated from high shear viscosity of nanofluid using the Einstein equation. The Hamilton-Crosser model with an effective volume fraction of nanoparticles resulted in better correlation for the thermal conductivities of nanofluids.