Biochemical and Biophysical Research Communications, Vol.310, No.3, 804-810, 2003
Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways
Angiostatin consisting of the first four-kringle domains of the plasminogen potently inhibits angiogenesis in vitro and in vivo. However, the molecular mechanism of action whereby angiostatin mediates its inhibitory effect on proliferating endothelial cells remains elusive. We therefore used the proliferating cultured human umbilical vein endothelial cells (HUVECs) promoted by vascular endothelial growth factor A to identify the endogenous signaling elements that mediate the antiangiogenic effect of angiostatin. Treatment of HUVEC with angiostatin at a concentration known to inhibit cell proliferation and induce apoptosis resulted in induction of p53-, Bax-, and tBid-mediated release of cytochrome c into the cytosol. In addition, angiostatin also activated the Fas-mediated apoptotic pathway in part via Up-regulation of FasL mRNA, down-regulation of c-Flip, and activation of caspase 3. These results suggest that the anti-angiogenic action of angiostatin is likely mediated by two distinct signaling pathways, one intrinsic mediated by p53 while the other extrinsic involved in FasL engagement and mitochondria dysfunction. (C) 2003 Elsevier Inc. All rights reserved.