Biochemical and Biophysical Research Communications, Vol.314, No.2, 403-408, 2004
Angiotensin II type 1 receptor blockade attenuates renal fibrogenesis in an immune-mediated nephritic kidney through counter-activation of angiotensin II type 2 receptor
The relative roles of angiotensin II (Ang II) type 1 receptor (AT(1)R) and Ang II type 2 receptor (AT(2)R) in immune-mediated nephritis are unknown, and the effect of the blockade of AT(1)R and its indirect counter-activation of AT(2)R relative to the antifibrotic action in this disease is unclear. To address this question, we studied the role of AT(1)R and AT(2)R in anti-glomerular basement membrane nephritis in SJL mice. Groups of mice were treated with either an AT(1)R antagonist (CGP-48933; CGP group), an AT(2)R antagonist (PD-123319; PD group), both (CGP/PD group), or a vehicle (PCt group) from Day 29 to 56. At Day 56 post-treatment, fibrosis-related parameters such as interstitial matrix deposition, and the expression of genes of TGF-beta1, plasminogen activator inhibitor-1, and type I collagen were significantly reduced in the kidney in the CGP group. There were no significant effects on these parameters in the PD group. However, this anti-fibrotic action by CGP-48933 was totally abolished by co-treatment with PD-123319 in the CGP/PD group. The gene expression of renin was significantly increased in the kidneys in the CGP and CGP/PD groups, suggesting that CGP-48933 had increased Ang II generation in those groups. In conclusion, counter-activation of AT(2)R by increased Ang II under AT(1)R blockade likely conferred an anti-fibrotic protection in this model. (C) 2003 Elsevier Inc. All rights reserved.
Keywords:angiotensin II type 1A receptor;angiotensin II type 2 receptor;antagonist;anti-glomerular basement membrane nephritis;transforming growth factor-beta 1;type I collagen;plasminogen activator inhibitor-1;renal fibrogenesis