Biochemical and Biophysical Research Communications, Vol.325, No.3, 871-876, 2004
Rosuvastatin upregulates the antioxidant defense protein heme oxygenase-1
Cholesterol-independent, pleiotropic actions of HMG-CoA reductase inhibitors (statins) lead to anti-inflammatory and antioxidant actions by as yet unidentified mechanisms. This study explores the role of heme oxygenase-1 (HO-1) as target and potential mediator of rosuvastatin. In cultured human endothelial cells (ECV 304), rosuvastatin increased HO-I mRNA and protein levels in a concentration-dependent fashion. HO-1 induction by rosuvastatin remained unaffected by mevalonate and N-nitro-L-arginine-methylester, showing that isoprenoid- and NO-dependent pathways were not involved. Pretreatment of endothelial cells with rosuvastatin reduced NADPH-dependent production of oxygen radicals. The HO-1 metabolite bilirubin, when added exogenously to the cells, virtually abolished NADPH-dependent oxidative stress. Rosuvastatin-induced inhibition of free radical formation was rescued in the presence of the HO inhibitor, tin protoporphyrin-IX. Our results demonstrate that HO-1 is a target site and antioxidant mediator of rosuvastatin in endothelial cells. This novel pathway may contribute to and partially explain the pleiotropic antiatherogenic actions of rosuvastatin. (C) 2004 Elsevier Inc. All rights reserved.
Keywords:antioxidant;heme oxygenase;bilirubin;HMG-CoA reductase inhibitor;endothelial cells;pleiotropic action;rosuvastatin;gene expression;free radicals;cytoprotection