화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.337, No.2, 677-684, 2005
Functional NifD-K fusion protein in Azotobacter vinelandii is a homodimeric complex equivalent to the native heterotetrameric MoFe protein
The MoFe protein of the complex metalloenzyme nitrogenase folds as a heterotetramer containing two copies each of the homologous alpha and beta subunits, encoded by the nifD and the nifK genes respectively. Recently, the functional expression of a fusion NifD-K protein of nitrogenase was demonstrated in Azotobacter vinelandii, strongly implying that the MoFe protein is flexible as it could accommodate major structural changes, yet remain functional [M.H. Suh, L. Pulakat, N. Gavini, J. Biol. Chem. 278 (2003) 5353-5360]. This finding led us to further explore the type of interaction between the fused MoFe protein units. We aimed to determine whether an interaction exists between the two fusion MoFe proteins to form a homodimer that is equivalent to native heterotetrameric MoFe protein. Using the Bacteriomatch Two-Hybrid System, translationally fused constructs of NifD-K (fusion) with the full-length lambda CI of the pBT bait vector and also NifD-K (fusion) with the N-terminal alpha-RNAP of the pTRG target vector were made. To compare the extent of interaction between the fused NifD-K proteins to that of the beta-beta interactions in the native MoFe protein, we proceeded to generate translationally fused constructs of NifK with the alpha-RNAP of the pTRG vector and lambda CI protein of the pBT vector. The strength of the interaction between the proteins in study was determined by measuring the beta-galactosidase activity and extent of ampicillin resistance of the colonies expressing these proteins. This analysis demonstrated that direct protein-protein interaction exists between NifD-K fusion proteins, suggesting that they exist as homodimers. As the interaction takes place at the beta-interfaces of the NifD-K fusion proteins, we propose that these homodimers of NifD-K fusion protein may function in a similar manner as that of the heterotetrameric native MoFe protein. The observation that the extent of protein-protein interaction between the beta-subunits of the native MoFe protein in BacterioMatch Two-Hybrid System is comparable to the extent of protein-protein interaction observed between the NifD-K fusion proteins in the same system further supports this idea. (c) 2005 Elsevier Inc. All rights reserved.