화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.338, No.4, 1739-1744, 2005
Diethyldithiocarbamate inhibits in vivo Cu,Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells
Copper-zinc superoxide dismutase (Cu,Zn-SOD) and manganese superoxide dismutase (Mn-SOD) in some model experiments in vitro demonstrated antioxidant as well as pro-oxidant properties. In the present study, yeast Saccharomyces cerevisiae lacking Mn-SOD were studied using Cu,Zn-SOD inhibitor N-N'-diethyldithiocarbamate (DDC) as a model system to study the physiological role of the yeast Cu,Zn-SOD. Yeast treatment by DDC caused dose-dependent inhibition of SOD in vivo, with 75% inhibition at 10 mM DDC. The inhibition of SOD by DDC resulted in modification of carbonylprotein levels, indicated by a bell-shaped curve. The activity of glutathione reductase, isocitrate dehydrogenase, and glucose-6-phosphate dehydrogenase (enzymes associated with antioxidant) increased, demonstrating a compensatory effect in response to SOD inhibition by different concentrations of DDC. A strong positive correlation (R-2 = 0.97) was found between SOD and catalase activities that may be explained by the protective role of SOD for catalase. All observed effects were absent in the isogenic SOD-deficient strain that excluded direct DDC influence. The results are discussed from the point of view that in vivo Cu,Zn-SOD of S. cerevisiae can demonstrate both anti- and pro-oxidant properties. (c) 2005 Elsevier Inc. All rights reserved.