화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.345, No.1, 332-339, 2006
Endothelin-1 inhibits adiponectin secretion through a phosphatidylinositol 4,5-bisphosphate/actin-dependent mechanism
Adiponectin is an adipokine with profound insulin-sensitizing, anti-inflammatory, and anti-atherogenic properties. Plasma levels of adiponectin are reduced in insulin resistant states such as obesity, type 2 diabetes and cardiovascular disease. However, the mechanism(s) by which adiponectin concentrations are decreased during disease development is unclear. Studies have shown that endothelin-1 (ET-1), a vasoconstrictor peptide, affects adipocyte glucose metabolism and secretion of adipokines such as leptin, resistin, and adiponectin. The goal of our study was to determine the mechanism by which ET-1 decreases adiponectin secretion. 3T3-L1 adipocytes were treated for 24 h with ET-1 (10 nM) and then stimulated with vehicle or insulin (100 nM) for a period of 1-2 It. Chronic ET-1 (24 h) treatment significantly decreased basal and insulin-stimulated adiponectin secretion by 66% and 47%, respectively. Inhibition of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by the PLC beta inhibitor, U73122, or exogenous addition Of PIP2:histone carrier complex (1.25:0.625 mu M) ameliorated the decrease in basal and insulin-stimulated adiponectin secretion observed with ET-1. However, treatment with exogenous PIP2:histone carrier complex and the actin depolymerizing agent latrunculin B (20 mu M) did not reverse the ET-1-mediated decrease in adiponectin secretion. In conclusion, we demonstrate that ET-1 inhibits basal and insulin-stimulated adiponectin secretion through PIP2 modulation of the actin cytoskeleton. (c) 2006 Elsevier Inc. All rights reserved.