화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.350, No.1, 179-184, 2006
Signaling pathways regulating murine cardiac CREB phosphorylation
Using the mouse Langendorff heart perfusion model, the signaling pathways that regulate cardiac CREB-S133 phosphorylation have been defined. In mouse hearts stimulated with isoproterenol (ISO) (10(-8) M), endothelin-1 (ET-1) (10(-8) M), and phorbol 12-myristate 13-acetate (TPA) (10(-7) M), CREB-S133 phosphorylation was attained only by TPA-treatment. Activation of protein kinase A (PKA) was achieved by ISO. ISO- and ET-1-stimulation activated Ca2+/calmodulin-dependent kinase II (CaMKII). Protein kinase C (PKC) and p90(RSK) were activated with all three stimuli. Inhibition of ERK1/2 with PD98059 (10(-5) M) completely inhibited the activation of p90(RSK), but did not block CREB-S133 phosphorylation in TPA-perfused heart, indicating that PKA, CaMKII, and p90(RSK) do not phosphorylate CREB-S133 in the murine heart. PKC activation is signal specific. Analyses of PKC isoforms suggest that CREB phosphorylation is mediated by PKC epsilon translocating into nucleus only with TPA stimulation. These results, unlike those reported in other tissues, demonstrate that cardiac CREB is not a multi-signal target. (c) 2006 Elsevier Inc. All rights reserved.