Biochemical and Biophysical Research Communications, Vol.353, No.3, 841-847, 2007
Loss of TGF-beta dependent growth control during HSC transdifferentiation
Liver injury induces activation of hepatic stellate cells (HSCs) comprising expression of receptors, proliferation, and extracellular matrix synthesis triggered by a network of cytokines provided by damaged hepatocytes, activated Kupffer cells and HSCs. While 6 days after bile duct ligation in rats TGF-beta inhibited DNA synthesis in HSCs, it was enhanced after 14 days, indicating a switch from suppression to DNA synthesis stimulation during fibrogenesis. To delineate mechanisms modulating TGF-beta function, we analyzed crosstalk with signaling pathways initiated by cytokines in damaged liver. Lipopolysaccharide and tumor necrosis factor-alpha enhanced proliferation inhibition of TGF-beta, whereas interleukin-6, oncostatin M, interleukin-1 alpha, and interleukin-1 beta did not. Hepatocyte growth factor (HGF) counteracted TGF-beta dependent inhibition of DNA synthesis in quiescent HSCs. Since expression of c-met is induced during activation of HSCs and HGF is overrepresented in damaged liver, crosstalk of HGF and TGF-beta contributes to loss of TGF-beta dependent inhibition of DNA synthesis in HSCs. (c) 2006 Elsevier Inc. All rights reserved.
Keywords:fibrosis;fibrogenesis;hepatic stellate cells;hepatocyte growth factor;hepatocytes;proliferation;cytokine;inhibition;DNA synthesis