화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.269, No.3, 775-780, 2000
Oxidized monocyte-derived macrophages in aortic atherosclerotic lesion from apolipoprotein E-deficient mice and from human carotid artery contain lipid peroxides and oxysterols
Oxidative stress is thought to play an important role in atherogenesis. The present study demonstrated, for the first time, that macrophages (originally derived from blood monocytes) isolated from aortas of the atherosclerotic apolipoprotein E deficient (E degrees) mice or from human carotid artery, are oxidized as they contain lipid peroxides and oxysterols. The major oxysterol in arterial macrophages was found to be 7-ketocholesterol (51% of total oxysterols). To find out whether lipid peroxidation of monocytes occurs in vivo already in the blood, we analyzed the oxidative state of monocytes derived from E degrees mice in comparison to monocytes from control mice. Cellular lipid peroxides and total oxysterols were four and sevenfold higher respectively, in monocytes derived from E degrees mice in comparison to monocytes from control mice. The results of the present study thus demonstrated the presence of lipid-peroxidized monocytes already in the blood, which are further oxidized in the arterial wall after their conversion into macrophages. The arterial oxidized macrophages could be considered key contributors to foam cell formation, the hallmark of early atherosclerosis, 2000 Academic Press.