화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.273, No.2, 699-704, 2000
COX-2 inhibition prevents insulin-dependent diabetes in low-dose streptozotocin-treated mice
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease believed to be caused by an inflammatory process in the pancreas leading to selective destruction of the beta cells. Inducible cyclooxygenase (COX-2) is expressed under inflammatory conditions and its product prostaglandin E-2 (PGE(2)) is an important inflammation mediator. We report here that administration of the selective COX-2 inhibitor NS-398 prevents the onset of diabetes in mice brought on by multiple low-doses of streptozotocin (STZ). Histological observations indicated that STZ-mediated destruction of beta cells was prevented by NS-398 treatment. Delayed (day 3) administration of NS-398 was also protective in this model. No protective effect was observed when NS-398 was administered prior to a high, toxic dose of STZ. These results demonstrate the critical importance of COX-2 activity in autoimmune destruction of beta cells, and point to the fact that COX-2 inhibition can potentially develop into a preventive therapy against IDDM.