화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.276, No.1, 278-285, 2000
Norcantharidin-induced post-G(2)/M apoptosis is dependent on wild-type p53 gene
Norcantharidin (NCTD), a synthetic analogue of phosphatase type 2A inhibitors, cantharidin, was shown to have limited effects in treating human and animal tumors. The tumor cell killing mechanisms by norcantharidin, however, remain unclear. In this report, we wished to investigate the mechanisms of norcantharidin-mediated cytotoxicity. Effort was made to investigate whether norcantharidin exerted its cytotoxicity through a p53-dependent or -independent mechanism. RT-2 (wtp53) and U251 (mutant p53) glioblastoma cell lines were exposed to norcantharidin at different dosages. Time-course fluorescent-activated cell sorting (FACS) analysis showed that high doses of norcantharidin arrested the cells at the G(2)/M phase and subsequent post-G(2)/M apoptosis in RT-2 cell line. In comparison, the U251 cell line was found resistant to norcantharidin-induced cytotoxicity. Restoring wild-type p53 gene function in the U251 cell line after adenoviral infections induced tumor cell cytotoxicity after exposure to norcantharidin. These results showed that norcantharidin kills tumor cells efficiently corresponding to their endogenous p53 gene status. The results also showed the feasibility of using adenoviral p53 gene therapy to enhance chemosensitivity of tumor cells to norcantharidin.