Biochemical and Biophysical Research Communications, Vol.277, No.3, 531-534, 2000
Cytochrome P4503A-dependent metabolism of tocopherols and inhibition by sesamin
Carboxychroman metabolites of the major dietary tocopherols are excreted in human urine, but the mechanism of their synthesis is unknown. We employed well-characterized inhibitors of specific cytochrome P-450 (CYP) enzymes to determine which form was likely involved in tocopherol side chain oxidation. Ketoconozole (1.0 muM), a potent and selective inhibitor of CYP3A, substantially inhibited metabolism of gamma- and cu-tocopherol in rat primary hepatocytes, and metabolism of gamma- and delta -tocopherol in HepG2/C3A cells. Sulphaphenazole and cyclosporin, inhibitors of CYP2C and CYP27, respectively, were without effect. Sesamin, a sesame lignan that causes elevation of tissue tocopherol concentration in rats, strongly inhibited tocopherol metabolism by HepG2/C3A cells at 1.0 muM These results support a CYP3A-dependent mechanism of side chain metabolism of tocopherols to water-soluble carboxychromans, and provide the first evidence of a specific enzyme involved in vitamin E metabolism. The data further suggest that sesamin increases tissue tocopherol concentration by inhibiting tocopherol catabolism.