Biochemical and Biophysical Research Communications, Vol.278, No.1, 38-43, 2000
Suppressor of cytokine signaling (SOCS)-3 protein interacts with the insulin-like growth factor-I receptor
SOCS proteins are a class of proteins that are negative regulators of cytokine receptor signaling via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. In a yeast two-hybrid screen of a human fetal brain library, we have previously identified SOCS-2 as a binding partner of the activated IGF-I receptor (IGFIR). To test whether or not SOCS-3 also binds to the IGFIR, we cloned human SOCS-3 by reverse transcription-polymerase chain reaction from human skeletal muscle mRNA. SOCS-3 mRNA was expressed in many human fetal and adult tissues and in some human cancer cell lines (Hela, A549 pulmonary adenocarcinoma and G361 human melanoma). We found that human SOCS-3 protein interacts directly with the cytoplasmic domains of the activated IGFIR and the insulin receptor (IR) in the yeast two-hybrid assay. In GST-SOCS-3 pull-down experiments using IGFIR from mammalian cells and in immunoprecipitation experiments in which IGFIR and FLAG-SOCS-3 were transiently expressed in human embryonic kidney 293 cells, we found that SOCS-3 interacts constitutively with IGFIR in vitro and in intact cells. Unlike SOCS-2, hSOCS-3 was phosphorylated on tyrosines in response to IGF-I addition to 293 cells. We conclude that SOCS-3 binds to the IGFIR and may be a direct substrate for the receptor tyrosine kinase.