Biochemical and Biophysical Research Communications, Vol.286, No.5, 1073-1081, 2001
Archaeoglobus fulgidus RNase HII in DNA replication: Enzymological functions and activity regulation via metal cofactors
RNA primer removal during DNA replication is dependent on ribonucleotide- and structure-specific RNase H and FEN-1 nuclease activities. A specific RNase H involved in this reaction has long been sought. RNase HII is the only open reading frame in Archaeoglobus fulgidus genome, while multiple RNases H exist in eukaryotic cells. Data presented here show that RNase HII from A. fulgidus (aRNase HII) specifically recognizes RNA-DNA junctions and generates products suited for the FEN-1 nuclease, indicating its role in DNA replication. Biochemical characterization of aRNase HII activity in the presence of various divalent metal ions reveals a broad metal tolerance with a preference for Mg2+ and Mn2+. Combined mutagenesis, biochemical competitions, and metal-dependent activity assays further clarify the functions of the identified amino acid residues in substrate binding or catalysis, respectively. These experiments also reveal that Asp129 form a second-metal binding site, and thus contribute to activity attenuation.