Biochemical and Biophysical Research Communications, Vol.287, No.4, 914-920, 2001
Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells
Agents that are capable of inducing selective apoptosis of cancer cells are receiving considerable attention in developing novel cancer-preventive approaches. In the present study, employing normal human prostate epithelial cells (NHPE), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate adenocarcinoma (CA-HPV-10) cells, we evaluated the growth-inhibitory effects of apigenin, a flavonoid abundantly present in fruits and vegetables. Apigenin treatment to NHPE and PZ-HPV-7 resulted in almost similar growth inhibitory responses of low magnitude. In sharp contrast, apigenin treatment resulted in a significant decrease in cell viability of CA-HPV-10 cells. Similar selective growth inhibitory effects were also observed for human epidermoid carcinoma A431 cells compared to normal human epidermal keratinocytes. Apigenin treatment resulted in significant apoptosis of CA-HPV-10 cells as evident from (i) DNA ladder assay, (ii) fluorescence microscopy, and (iii) TUNEL assay, whereas the NHPE and PZ-HPV-7 cells did not undergo apoptosis but showed exclusive necrotic staining only at a high dose of 40 muM. Apigenin (1-10 muM) also resulted in a dose-dependent G2-M phase cell cycle arrest of CA-HPV-10 cells but not of PZ-HPV-7 cells. The growth-inhibitory and apoptotic potential of apigenin was also observed in a variety of prostate carcinoma cells representing different stage and androgen responsiveness. Apigenin may be developed as a promising chemopreventive and/or chemotherapeutic agent against prostate cancer.