Biochemical and Biophysical Research Communications, Vol.290, No.2, 778-782, 2002
Double base lesions of DNA by a metabolite of carcinogenic benzo[a]pyrene
Carcinogenic benzo[a]pyrene (BP) is generally considered to show genotoxicity by forming DNA adducts of its metabolite, BP-7,8-diol-9,10-epoxide. We investigated oxidative DNA damage and its sequence specificity induced by BP-7,8-dione, another metabolite of BP, using P-32-5'-end-labeled DNA. Formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at G residues of 5'-TG-3' sequence and at poly(C) sequences, in DNA incubated with BP-7,8-dione in the presence of NADH and Cu(II), whereas piperidine treatment induced cleavage sites at T mainly of 5'-TG-3'. BP-7,8-dione strongly damaged the G and C of the ACG sequence complementary to codon 273 of the p53 gene. Catalase and a Cu(I)-specific chelator attenuated the DNA damage, indicating the involvement of H2O2 and Cu(I). BP-7,8-dione with NADH and Cu(II) also increased 8-oxo-7,8-dihydro-2'-deoxyguanosine formation. We conclude that oxidative DNA damage, especially double base lesions, may participate in the expression of carcinogenicity of BP in addition to DNA adduct formation. (C) 2002 Elsevier Science.