화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.307, No.1, 23-30, 2003
The bisphosphonate ibandronate stimulates reverse cholesterol transport out of monocytoid cells by enhanced ABCA1 transcription
Nitrogen-containing bisphosphonates used in osteoporosis act by interference with pyrophosphorylated intermediates of the sterol pathway and are internalized by monocytes/macrophages, key players in atherogenesis. We therefore studied the effects of ibandronate on monocytic cholesterol homeostasis. In differentiated human MM6 cells and freshly prepared human PBMCs lipoprotein receptor transcription was quantified by real-time RT-PCR and receptor-mediated cellular cholesterol handling by lipoprotein-driven uptake and efflux assays. Low nanomolar concentrations of ibandronate reduced cellular cholesterol content despite reactive up-regulation of the LDL receptor. Simultaneously, the transcription of the cellular cholesterol exporter ABCA1 was severalfold stimulated, whereas the scavenger receptor CD36 was down-regulated. Thereby, ibandronate decreased the cellular uptake of modified LDL and enhanced the efflux of cholesterol to delipidated HDL. Geranylgeraniol antagonized the stimulation of ABCA1 expression by ibandronate. Ibandronate in low pharmacologic concentrations redirects monocytic cholesterol handling from favouring foam cell formation towards enhanced reverse cholesterol transport. (C) 2003 Elsevier Science (USA). All rights reserved.