화학공학소재연구정보센터
Biomacromolecules, Vol.3, No.3, 565-578, 2002
Structure of artificial cytoskeleton containing liposomes in aqueous solution studied by static and dynamic light scattering
The structure of three types of liposomes (egg yolk phosphatidylcholine (EPC) without modification and EPC vesicles containing cross-linked N-isopropylacrylamide (NIPAM) networks of low and a high concentration inside the vesicles) were analyzed by static and dynamic light scattering. Upon polymerization the network was assumed to become attached to the membrane by reactive anchoring monomers. For the sample of high poly(NIPAM) content the polymer network was assumed to fill the whole space in the vesicles. The issue of the present study was to examine hard and hollow sphere behavior of the liposomes with networks of high and low poly(NIPAM) content. The theoretical scattering curves differ markedly for uniform hard and uniform hollow spheres by the presence of specific peaks. However, polydispersity washed out the peaks and led to smoothed asymptotes with fractal dimensions of d(f) = 2 for hollow and d(f) = 4 for hard spheres. The experimental data could efficiently be fitted with weakly polydisperse hollow spheres. No clear conclusion could be drawn from the angular dependence alone for the liposome of high poly(NIPAM) content. The two wavelengths from the HeNe and Ar lasers proved to be too long for the studied liposomes of about 100 nm in radius. However, evidence for hollow sphere behavior was found for fractionated liposomes from the ratio p = R-g/R-h = 1.04 +/-0.02 (theory rho = 1.00 for hollow spheres). Finally, from the molar mass and the sphere radius, an apparent density was determined. The analysis gave the expected density for the pure EPC lecithin vesicles and a poly(NIPAM) network density of 0.244 g/mL. For the liposome of low poly(NIPAM) content the network appeared to be attached to the inner surface of the lecithin shell to form a layer of about IS nm thickness.