화학공학소재연구정보센터
Polymer(Korea), Vol.15, No.1, 76-87, February, 1991
방사선 전조사에 의한 다공성 PP Membrane에 대한 Acrylonitrile 그라프트 공중합체의 합성 및 우라늄 분리
Synthesis of Graft Copolymer of Acrylonitrile onto Polypropylene Membrane by Preirradiation and Separation of Uranium
초록
해수로부터 우라늄을 분리하기위해 방사선 전조사 방법으로 다공성 아미드 옥심형 PP-AN 멤브레인을 합성하였다. 또한 이들의 그라프트율 및 아미드 옥심화율을 계산하였으며 적외선 분광법으로 구조를 확인하였다. 그라프트율은 반응시간에 따라 증가하였으며 조사선량 200KGy일 때 최대 96%였고, 또한 아미드 옥심율도 증가하였다. 수은 압입법에 의한 각 시료의 pore volume을 측정한 결과 grafting 및 아미드 옥심화에 따라 pore volume는 감소하였다. 또한 이들의 변화를 SEM 사진으로 관찰하였다. 한편 pH의 변화에 따른 우라늄 흡착량은 pH6-pH7 범위에서 최대를 나타냈으며, 투과실험 결과 흡착 평형시까지는 투과가 일어나지 않았으며 투과 속도 및 투과량은 투과시간이 지남에 따라 선형적으로 증가하였다.
A porous poly(propylene)-acrylonitrile (PP-AN) membrane containing amidoxime group was prepared by preirradiation to separate uranium from seawater. The extent of grafting and the yield of amidoxime in this membrane were calculated. And the structure of samples were also examined by using FT-IR spectroscopy. It was found that both the degree of grafting and the yield of amidoxime were increased with reaction time. The degree of grafting was reached a maximum value of 96% at 200 KGy dose of radiation intensity. The pore volume of samples were determined by mercury press methods. They were found to decrease with grafting or amidoximation. The morphological changes of trunk polymer, PP-AN graftmer and the membrane containing amidoxime group were also investigated by SEM. The permeability of uraniyl ion through the membrane containing the amidoxime group was maximized in the pH range, 6-7. However, the permeation of was not initiated until the adsorption equilibrium was established. The rate and amount of the permeation were increased linearly with time.
  1. Omichi H, Katakai A, Sugo T, Okamoto J, Sep. Sci. Technol., 20(2-3), 163 (1985)
  2. Okamoto J, Sugo T, Katakai A, Omichi H, J. Appl. Polym. Sci., 30, 2967 (1985) 
  3. Omichi H, Katakai A, Sugo T, Okamoto J, Sep. Sci. Technol., 21, 563 (1986)
  4. Omichi H, Katakai A, Sugo T, Okamoto J, Sep. Sci. Technol., 21, 299 (1986)
  5. Katoh S, Sugasaka K, Sakane K, Takai N, Takahashi H, Umezawa Y, Itagaki T, J. Chem. Soc. Jpn., 1449 (1982)
  6. Katoh S, Sugasaka K, Sakane K, Takai N, Takahashi H, Umezawa Y, Itagaki T, J. Chem. Soc. Jpn., 1455 (1982)
  7. Omichi H, Katakai A, Sugo T, Okamoto J, Sep. Sci. Technol., 22, 1313 (1987)
  8. Bernido C, Omichi H, Katakai A, Okamoto J, Sep. Sci. Technol., 23, 35 (1988)
  9. Omichi H, Katakai A, Okamoto J, Sep. Sci. Technol., 23, 2445 (1988)
  10. Wentong F, Bingkun L, Haiyang Xuebao, 8, 701 (1986)
  11. Soldatov VS, Sergeev GI, Martsinkevich RV, Dock. Acad. Nauk USSR, 28, 1009 (1984)
  12. Soldatov VS, Sergeev GI, Martsinkevich RV, Dock. Akad. Nauk USSR, 61(1), 46 (1988)
  13. Marhol M, Ion-Exchangers in Analytical Chem. Part 1, Mir. Moscow, p. 92 (1985)
  14. Saito K, Hori T, Furusaki S, Sugo T, Okamoto J, Ind. Eng. Chem. Res., 26, 1977 (1987) 
  15. Saito K, Miyauch T, J. Nucl. Sci. Technol., 19, 145 (1982)
  16. Astheimer L, Schenk HJ, Witte EG, Schwochau K, Sep. Sci. Technol., 18, 307 (1983)
  17. Saito K, Yamada S, Fursaki S, Sugo T, Okamoto J, J. Membr. Sci., 34, 307 (1987)