화학공학소재연구정보센터
Biomacromolecules, Vol.3, No.5, 899-904, 2002
Mercury intrusion porosimetry, nitrogen adsorption, and scanning electron microscopy analysis of pores in skin
Stability of collagenous matrixes such as skin and leather with respect to changes in their dimensions on heating has long been correlated with degree and type of cross links formed and short-range ordering in angstrom unit scales. Macroscopic dimensional changes may be expected to involve alterations in the long-range order as well as supramolecular assemblies in skin and leather. This study relates thermal shrinkage of skin matrixes with alterations observed in micro-, meso-, and macroporic structures. Changes in the pore structure of skin associated with thermal shrinkage have been studied using nitrogen adsorption and mercury intrusion porosimetry measurements. A comparison of results obtained using both techniques has been made. These results indicate that although the percentage porosity of the matrix decreases, the BET specific surface area increases on shrinkage. An insight into the changes in the pore systems of skin induced by thermal shrinkage has been gained.